

Cometary Dust: A Window to the Evolution of the Solar System

Yuna G. Kwon

Technische Universität Braunschweig

Alexander von Humboldt Stiftung/Foundation

Virtual RG Mitte-Nord meeting 20:15 p.m., 23 June, 2021

© Early Solar System, ESO

Life Cycle of Cosmic Dust

Credits: Francisca Kemper, Hirashita Hiroyuki, ASIAA

Primordial Small Bodies

Volatile, Organic-rich Planetesimals Left from the Formative Epoch of the Solar System

Comets

Hierarchical Structure of Dust

Scattered Light Observations

Photometry

Scattered Light Observations

- Integration of photons over the aperture
- \propto # of dust particles
- Changes in coma brightness and morphology
- A proxy of the activity level of a comet

Scattered Light Observations

Kwon et al. (2017)

Polarimetry

- Integration of photons over the spectral bin
- \propto # of dust particles
- Changes in continuum and line intensities
- Coma composition, a proxy of the activity level of a comet

Scattered Light Observations

Polarimetry

- The ratio of the intensity passing through polarizers
- Changes in dust characteristics
- The microphysical and compositional properties of dust

 $\bigcirc]$

Kwon et al.

. 2021a

Dust evolution near the Sun

Once comets start orbital motions around the Sun, changes in radiative and thermal environments entail the development of unique dust features.

 \rightarrow changes in e.g., size, porosity, and composition

For example, the sintering effect of dust and ice particles by excessive solar heat near the perihelion, changing the thermal and mechanical properties of dust

The positive correlation between polarimetric and thermal properties of cometary dust, implying the evolutionary effect on the dust porosity

Linking in-situ & ground-based

 \star

Summary

We aim to leverage cometary dust as a window to the evolution of the solar system. Ongoing projects are as follows.

- Constraints on the microphysical and compositional properties of comets throughout the apparition
- Establishing correlations between the observables
- Filling the missing link in spacetime between in-situ and ground-based observations of cometary dust

To draw a more comprehensive picture for working mechanisms in the solar system Preparation of the Comet Interceptor mission!

ynkwontop@gmail.com

y.kwon@tu-braunschweig.de

Supplementary Materials

Fundamental reason for the existence: *Heterogeneity* → *Light scattering*

$$\overrightarrow{E}(t) = \overrightarrow{E_0}(t) \exp(i \overrightarrow{k} \cdot \overrightarrow{x} - i\omega t)$$

Maxwell's macroscopic equations

$$\nabla \times \overrightarrow{E} = 0 \qquad \nabla \cdot \overrightarrow{H} = 0$$
$$\nabla \times \overrightarrow{F} = -\mu^* \frac{\partial \overrightarrow{H}}{\partial t}$$
$$\nabla \times \overrightarrow{H} = \varepsilon^* \frac{\partial \overrightarrow{E}}{\partial t}$$

 $\overrightarrow{D} = \varepsilon^* \overrightarrow{E} + \overrightarrow{P}$ (average electric dipole moment per unit volume) $\overrightarrow{B} = \mu^* \overrightarrow{H}$

COMETS

Polarization of Cometary Dust

What makes the polarization (*P*)? monomers μ = dipole-like radiation ... P is a manifestation of electromagnetic interaction of incident light with monomers in the aggregate

Incoming vertically polarized light

No absorption

Maximum absorption

Some molecules will absorb light

Polarimetry for solar system small bodies

lpha : Phase angle

Why does the *P*-phase curve look like?

Supplementary materials

Comet Reservoirs

space-facts.com

Kuiper Belt (and scattered disk)

(inner and outer) Oort Cloud

Supplementary materials

Comet Classification

Dust tail

Outburst

